Brain lipid metabolism in the cPLA2 knockout mouse.

نویسندگان

  • Thad A Rosenberger
  • Nelly E Villacreses
  • Miguel A Contreras
  • Joseph V Bonventre
  • Stanley I Rapoport
چکیده

We examined brain phospholipid metabolism in mice in which the cytosolic phospholipase A(2) (cPLA(2,) Type IV, 85 kDa) was knocked out (cPLA(2)(-/-) mice). Compared with controls, these mice demonstrated altered brain concentrations of several phospholipids, reduced esterified linoleate, arachidonate, and docosahexaenoate in choline glycerophospholipid, and reduced esterified arachidonate in phosphatidylinositol. Unanesthetized cPLA(2)(-/-) mice had reduced rates of incorporation of unlabeled arachidonate from plasma and from the brain arachidonoyl-CoA pool into ethanolamine glycerophospholipid and choline glycerophospholipid, but elevated rates into phosphatidylinositol. These differences corresponded to altered turnover and metabolic loss of esterified brain arachidonate. These results suggests that cPLA(2) is necessary to maintain normal brain concentrations of phospholipids and of their esterified polyunsaturated fatty acids. Reduced esterified arachidonate and docosahexaenoate may account for the resistance of the cPLA(2)(-/-) mouse to middle cerebral artery occlusion, and should influence membrane fluidity, neuroinflammation, signal transduction, and other brain processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered brain lipid composition in cyclooxygenase-2 knockout mouse.

Cyclooxygenase (COX)-2 plays an important role in brain arachidonic acid (20:4n-6) metabolism, and its expression is upregulated in animal models of neuroinflammation and excitotoxicity. Our hypothesis was that brain lipid composition would be altered in COX-2 knockout (COX-2(-/-)) compared with wild-type (COX-2(+/+)) mice, reflecting the important role of COX-2 in brain lipid metabolism. Conce...

متن کامل

Arachidonate metabolism and the signaling pathway of induction of apoptosis by oxidized LDL/oxysterol.

Owing at least in part to oxysterol components that can induce apoptosis, oxidized LDL (oxLDL) is cytotoxic to mammalian cells with receptors that can internalize it. Vascular cells possess such receptors, and it appears that the apoptotic response of vascular cells to the oxysterols borne by oxLDL is an important part of the atherogenic effects of oxLDL. Thus, an analysis of the signaling path...

متن کامل

Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9

Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...

متن کامل

Generation of global Spata19 knockout mouse using CRISPR/Cas9 nickase technology

Introduction: SPATA19 gene is expressed in developmental stages of testis and some organs, but so far its function has only been examined in the testis. In this study, we provided an effective pathway for the generation of these mice using new CRISPR / Cas9 nickase method while generating Spata19 knockout mice for future studies in other organs. Materials and Methods: CRISPR / Cas9 nickase plas...

متن کامل

Generation of monoclonal antibodies specific for mouse apolipoprotein B-100 in apolipoprotein B-48-only mice.

Over the past 10 years, many laboratories have investigated lipid metabolism and atherogenesis with a variety of transgenic and gene knockout mouse models. Although many of these studies have yielded valuable insights, some have been hampered by a paucity of useful antibodies against mouse proteins. For example, many laboratories have analyzed genetic and dietary interventions affecting lipopro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 44 1  شماره 

صفحات  -

تاریخ انتشار 2003